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Abstract:  

Textile Reinforced Concrete (TRC) has emerged as a promising alternative wherein 

corrosion is no longer an issue and much thinner and light-weight elements can be designed. 

Although TRC has been expansively researched, the formalization of experimental methods 

concerning durability arises when attempting to implement and design such innovative 

building materials. In this study, accelerated ageing tests paired with tensile tests were 

performed. The change in physico-mechanical properties of various commercially available 

textile reinforcements was documented and evaluated. The ability for the reinforcements to 

retain their tensile capacity was also quantified in the form of empirical degradation curves. It 

was observed that accelerated test parameters typically applied to fibre-reinforced polymer 

(FRP) bars and grids are generally too aggressive for the textile reinforcement products and 

alternative boundary conditions are necessary. The developed degradation curves were 

found to have an overall good correlation with the experimental findings. 

Keywords: Textile reinforced concrete; accelerated ageing; tensile testing; experimental 
tests; durability.  
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1. Introduction 

Textile reinforced concrete (TRC) not only presents sustainable advantages [1] but has also 

been found to be a suitable material for structures such as thin cladding and sandwich 

elements [2, 3]. These alternative reinforcement materials are typically made of alkali-

resistant (AR) glass, basalt or carbon fibres and offer a much lower density (1800-

3000 kg/m3) in comparison to steel reinforcement bars (7850 kg/m3) which further contributes 

to a reduction in dead weight. Nonetheless, questions regarding the long-term durability arise 

when attempting to design and implement new building materials such as TRC, as there is 

minimal long-term performance or durability data available [4, 5].  

TRC can be generally characterized as a three-phase material consisting of a cementitious 

matrix, fibre-yarn structure as well as a fibre-matrix interface. This heterogeneous material 

can be exposed to various degradation processes over its service life, such as fibre 

degradation due to chemical attack, fibre-matrix interfacial physical and chemical 

interactions, and volume instability and cracking [6]. These degradation processes can occur 

individually or simultaneously which in turn makes the characterization of the long-term 

performance of fibre-based composites complex. Another aspect which is critical to 

understand is that fibre-based reinforcement materials are marked by small surface defects 

or weak zones resulting from production and handling processes [7]. These defects have 

been found to be one of the factors contributing to strength loss of the final reinforcement 

product. Particularly concerning glass fibres, these weak zones have been observed to 

consequently grow when exposed to sustained loading conditions as a result of a 

mechanism called static fatigue or delayed failure [7, 8]. The static fatigue strength of the 

composite is related to the critical flaw size, stress level and exposure conditions which 

govern the crack growth rate of surface defects [9]. 

Individual fibres incorporated in the yarns which form the textile reinforcement grid are 

typically composed of a sizing material applied during production which serves primarily as a 
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surface protection [10]. This applied sizing could greatly influence the degradation process 

and long-term performance of the composite [11-13], particularly concerning AR-glass and 

basalt fibres. During the service life, TRC and the reinforcement could face such boundary 

conditions like the high alkalinity of the concrete pore water (peak during hydration), varying 

temperature and humidity loads, carbonation as well as sustained and cyclic loading and 

fatigue which could all have an effect on its long-term mechanical behaviour. As such, the 

critical zones of degradation will most likely be the fibre sizing-coating and the fibre-matrix 

interface. 

Durability performance is most accurately measured in real-time [5]; however, typically 

having time as a constraint, accelerated ageing tests [6] or experimentally calibrated models 

[10] have been used to predict the long-term performance of textile reinforcement, fibres or 

fibre-reinforced polymers (FRP) in a cementitious matrix. A common method to accelerate 

the ageing of fibres in the form of FRP rods or textile reinforcement consists of immersing 

them in a simulated or actual concrete pore solution, i.e. alkaline environment, while 

simultaneous being exposed to high temperature [10, 14]. For instance, this method has 

been used to measure the loss of tensile strength exclusively due to the so-called chemical 

corrosion process related to AR-glass textile reinforcement [15]. Alternatively, basalt or glass 

fibre yarns have been immersed in sodium hydroxide (NaOH) and hydrochloric acid (HCl) 

solutions for varying time periods [16] or 3-ionic solutions to target localized attack [17, 18]. 

Electron-microscopes have commonly been applied to investigate the degradation phases of 

the fibre-yarn surface [18] or the fibre-yarn-matrix interface [13]. Accelerated ageing of textile 

reinforcement cast in concrete has also been conducted in climate chambers at varying 

temperatures or moisture conditions followed by the quantification of loss of tensile strength 

and bond through various mechanical tests [4, 13, 19, 20]. A time-dependent model was 

even developed and calibrated to determine the strength loss of AR-glass textile 

reinforcement in TRC [21-23], which was thereafter applied to design a pedestrian bridge 

[24]. Although a number of accelerated tests have been reported in this field of study, 
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researchers have applied varying experimental methods and have investigated differing 

materials making them subjective and to some degree non-comparable.  

2. Research significance 

In this study, accelerated tests paired with direct tensile tests were performed according to 

ISO 10406-1 [25] pertaining to fibre-reinforced polymer (FRP) bars and grids. It was of key 

interest to forecast the so-called long-term mechanical behaviour and material degradation of 

various commercially available textile reinforcement products for potential use in new façade 

solutions. Alternative boundary conditions were also included in the scope of work to 

investigate the discrete influence of two key variables on material ageing, i.e. temperature 

and pH of a simulated pore solution. The change in physico-mechanical properties of the 

various textile reinforcements was documented and evaluated in this work. The ability for the 

reinforcement materials to retain their tensile capacity was also quantified in the form of 

empirical degradation curves. The study also included development of methods for 

preparation of end anchorage, gripping system to the testing machine and measurement of 

strain up to failure.  

3. Experimental program  

3.1 Textile reinforcement 

AR-glass, basalt and carbon textile reinforcement grids primarily selected based on the 

current availability of commercial products were investigated. TRC building applications have 

primarily focused on the use of AR-glass and carbon fibre materials, but natural and polymer 

fibres have also been researched for this application [5]. The use and durability of AR-glass 

has been deeply investigated for use in TRC as it has been both cost effective and readily 

available [21]. Alternatively, basalt fibres, mineral fibres extracted from volcanic rock, are 

often compared to glass fibres, such as E-glass and AR-glass, due to existing similarities in 

their chemical composition [11, 16, 26]. Regarding carbon fibre materials, the price per 

square meter of product is still significantly higher than the other alternatives, which is 
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primarily because it is still most commonly demanded in other industries such as automotive 

and aerospace. General material and mechanical properties are commonly provided by the 

textile reinforcement producers, such as those data presented in Table 1, and at times also 

including the modulus of elasticity and elongation. The methods used to obtain the 

mechanical properties vary based on the source, which could decrease the soundness of the 

available data. Even so, tensile testing of these reinforcement materials was conducted 

according to the standard method stated in ISO 10406-1 [25] to base further evaluations in 

this study on these obtained data. 

Table 1: General properties of the studied reinforcement materials. 

Material 
(Product/Supplier) 

Coating  Grid Spacing 
0°/90° [mm] 

Weight 
[g/m2] 

Tensile Strength of Yarn 
[N] 

AR-glass 
(Glasfiberväv 
Grov), Sto 
Scandinavia AB 

Styrene-butadiene 
resin (SBR), 20 % 

7/8 210 >400 

Basalt  
(Mesh-10-100), 
Sudaglass Fiber 
Technology Inc. 

Undisclosed resin, 
17 % 

10/10 165 1152 

Carbon (SIGRATEX 
Grid 250-24), SGL 
Group 

Styrene-butadiene 
resin (SBR), 15 % 

17/18 250 4243 

3.2 Test specimen preparation 

The mechanical properties and durability of the selected textile reinforcement materials were 

investigated. Specimen preparation and test methods provisioned in ISO 10406-1 [25] were 

applied to determine the tensile capacity, tensile rigidity and ultimate strain of the textile 

reinforcement alternatives pre- and post-immersion into an alkaline solution. The textile 

reinforcement, initially in the form of a grid, was cut into so-called individual yarns with a 

remaining 2 mm projection of the cross-points (crossbars) as well as more than three cross-

points along the length. 

The method applied for gripping the specimens in tensile tests is known to be crucial for the 

test results, and various methods have previously been evaluated for tensile tests of FRP-

bars [27]. The method must be suitable for the given specimen geometry while transmitting 
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only the tensile force along the longitudinal axis of the specimens. It should also be ensured 

that premature failure of the specimen does not take place in the grip zone which is an 

undesirable failure mode. Accordingly, various types of end anchorage were evaluated in this 

study which led to the conclusion that an aluminium tube with epoxy resin was the most 

suitable method as it allows for the tensile force to be transmitted to the specimen by shear 

stress within the epoxy. Other gripping methods, such as clamp-to-yarn, emery cloth, rubber 

sheets and aluminium tabs were found to underestimate the tensile strength of the material 

which resulted in the specimens to either slide out of the test grip or fail within the grip. 

The aluminium tubes used as end anchorage had a length ranging from 75-100 mm, outer 

diameter of 15 mm and inner diameter of 12 mm. The inside of the tubes were roughened 

and cleaned with acetone to achieve superior bonding with the epoxy. An epoxy resin with 10 

% sand filler (NM Injection 300, Nils Malmgren AB) was used. A special device was 

developed to keep the specimens and the tubes concentrically and vertically aligned during 

the epoxy setting, such that 14 specimens could be prepared simultaneously. The specimen 

ends were prepared in two phases; one end was firstly cast in the aluminium tube followed 

by a 24 h hardening period of the epoxy, thereafter the specimen was upturned and the 

second end was prepared using the same procedure. The total specimen length was 500 

mm and the end anchorage length, Le, was 75 – 100 mm on either side of the specimen as 

depicted in Figure 1. The tested length, L, was set to 300 – 350 mm which meets the 

minimum specified length of ≥ 300 mm. In addition, the gauge length of the extensometer 

measuring the strain, Lg, was 100 mm. 
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4. Results 

4.1 Visual observations 

The visual observations noted after the alkali resistance tests are reported in this section. 

The external appearance of the textile reinforcement specimens was examined pre- and 

post-immersion, for comparison of colour, surface condition and change in shape.  

The carbon textile reinforcement pre-immersion specimen (C0) was compared to the 

associated post-immersion specimens (C1-10, C1-20, C1-30, C2). After 10-30 days of 

immersion in pH 7 and pH 14 at 60°C, there was no significant visible change of colour or 

surface texture and all samples were intact. According to these results, accelerated testing 

using the alternative boundary conditions, so-to-say Cases 3 and 4, was not conducted.  

The basalt textile reinforcement post-immersion specimens (B1-5, B1-10, B1-20, B1-30, B2, 

B3, and B4) were compared to the reference pre-immersion specimens (B0). The B1-5 

specimens were not marked by any major visual changes and could be tested in tension. 

This product however showed signs of degradation after 10 days of immersion in the 

standard conditions, which included colour change and the start of coating separation 

towards the surface. The remaining specimens exposed to the standard conditions (B1-20, 

B1-30) were also marked by colour change and what appears to be the lifting of the coating 

to the surface, which is exemplified in Figure 5. These post-immersed specimens lost a great 

deal of physical strength to the point that they either broke during the handling process (B1-

10) or prior to removal from the solution (B1-20, B1-30) and therefore could not undergo 

tensile testing. It should be noted that the cross-points were a particular weak point in the 

structure, such that the coating built up in these locations and caused the cross-threads to lift 

and the samples to break at these localized points.  

In order to obtain a better understanding of the cause of such extensive deterioration, 

specimens were also immersed in a solution of pH 7 at 60 ±3°C for 30 days (Case 2). The 

observed degradation was similar to the specimens exposed to the standard conditions, yet 

these could be further tested in tension. Moreover, to verify if the elevated temperature of 
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Figure 6. Visual comparison between pre- (A0) and post-immersion (A1-30) for the AR-glass 
product. 

4.2 Tensile tests 

Tensile tests were performed on the selected textile reinforcement materials for pre- and 

post-immersion conditions. In the case where tensile tests could not be conducted due to the 

extent of sample degradation, particularly concerning basalt and AR-glass, additional tensile 

tests related to alternative boundary conditions were thus conducted. The primary 

mechanical properties extracted from the tensile test results consisted of the ultimate tensile 

capacity, Fu, and ultimate strain εu. The tensile rigidity, EA, was calculated from the load-

strain relation as the secant modulus between the load level at 20 % and 50 % of the tensile 

capacity. Furthermore, the tensile capacity retention rate, RET, and tensile rigidity retention 

rate, REA, which can be used to measure the relative mechanical degradation of the post-

immersed reinforcement specimens were computed. The tensile capacity retention rate is 

defined as per ISO 10406-1 [25] and the tensile rigidity retention rate is included in this work 

as an additional comparative parameter. The retention rates are described as per Equations 

1 and 2: 

RET = (Fu1/Fu0) ·100 (1) 

REA = (EA1/EA0) ·100 (2) 

where, Fu0 is the tensile capacity and EA0 is the tensile rigidity pre-immersion, and Fu1 is the 

tensile capacity and EA1 is the tensile rigidity post-immersion, all values in Newton. 

A compilation of the mean tensile test results along with the associated standard deviations 

are reported in Table 2. Furthermore, the tensile test results for the pre-immersed (reference) 

samples are compared to the post-immersed ones in terms of applied load versus strain in 

Figure 7. It should be noted that the strain is shifted from zero by an indicated change in 

strain for various data sets to enhance the overall visual clarity. 

Table 2: Mean tensile test results (standard deviation in parentheses). 
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Case Reinforcement type Tensile 
capacity, 
Fu (σ) [kN] 

Ultimate 
strain, εu 
(σ) [%] 

Tensile rigidity, 
EA (σ) [kN] 

Tensile 
capacity 
retention 
rate, RET 

(σ) [%] 

Tensile 
rigidity 
retention 
rate, REA 
(σ) [%] 

Reference Pre-immersion Carbon (C0) 1.88 (0.23) 0.87 (0.06) 221.38 (5.05) - - 

Basalt (B0) 0.62 (0.03) 2.85 (0.08) 23.73 (0.49) - - 

AR-glass (A0) 0.41 (0.02) 1.91 (0.10) 22.49 (0.49) - - 

1 60°C, pH 14, 30 d 
(ISO 10406-1) 

Carbon (C1-30) 2.36 (0.03) 1.01 (0.03) 235.68 (18.60) 125 (2) 106 (8) 

Basalt (B1-5) 0.02 (0.01) - - 3 (2) - 

Basalt (B1-10, B1-20, 
B1-30) 

Not measurable 

AR-glass (A1-5) 0.14 (0.03) - - 33 (7) - 

AR-glass (A1-10, A1-
20, A1-30) 

Not measurable 

2 60°C, pH 7, 30 d Carbon (C2) 2.14 (0.21) 0.91 (0.14) 234.33 (6.75) 114 (11) 106 (3) 

Basalt (B2) 0.39 (0.01) 1.70 (0.10) 23.13 (0.66) 62 (2) 97 (3) 

AR-glass (A2) 0.15 (0.03) 0.73 (0.10) 20.54 (2.62) 35 (7) 91 (12) 

3 20°C, pH 14, 10 d Basalt (B3) 0.32 (0.02) 1.37 (0.08) 23.38 (0.98) 52 (3) 99 (4) 

AR-glass (A3) 0.27 (0.01) 1.37 (0.11) 19.75 (1.43) 65 (3) 88 (6) 

4 20°C, pH 7, 10 d Basalt (B4) 0.56 (0.05) 2.52 (0.23) 24.11 (0.58) 90 (8) 102 (2) 

AR-glass (A4) 0.40 (0.04) 1.77 (0.17) 23.15 (0.59) 97 (10) 103 (3) 

The tensile behaviour of all the reinforcements depicted in Figure 7 have a brittle material 

behaviour signifying that there is no intermediate yielding point, and as such failure occurs 

upon reaching the ultimate stress. Concerning the carbon textile reinforcement, there is a 

general increasing trend noted for all measured and calculated parameters. The basalt and 

AR-glass samples aged according to the standard conditions of Case 1 were not measurable 

due to the extent of degradation with the exception of specimens aged for five days (B1-5, 

A1-5); wherein the strain up to failure could not be measured due to the fragility of the aged 

specimens. When exposed to Cases 2 and 3, the tensile capacity and the ultimate strain 

were observed to significantly decrease. Based on Figure 7, no particular remarks could be 

made regarding the effect of Case 4. 
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5. Discussion 

5.1 Retention rates 

The tensile capacity and rigidity retention rates are graphically illustrated for the sake of 

comparing the mean values, data scatter and confidence intervals for all tested cases. The 

tensile capacity and rigidity retention rates shown in Figure 8 were statistically evaluated 

using a two-sample t-test procedure assuming equal variances and corresponding to a 

confidence interval of 95 %. Respective 95 % confidence intervals were thereafter calculated 

based on these statistical data according to common statistical methods for two samples 

found in e.g. Montgomery, Runger, et al. [28]. The calculated confidence interval is shown to 

indicate whether or not the mean value is significantly different from the reference. From this 

type of comparison, existing trends in the retention rates can be depicted and confirmed for 

each reinforcement alternative.  

The carbon textile reinforcement samples exposed to the standard conditions of 60°C, pH 

14, 30 days (Case 1) appear to have a significant increase in tensile capacity and no change 

in tensile rigidity. The results pertaining to the samples aged for 60°C, pH 7, 30 days (Case 

2) indicate no major change in tensile capacity but a notable increase in tensile rigidity. The 

cause of the noted increase is likely related to the stiffening of the applied resin at high 

temperatures which has also been observed in Hegger, Horstmann, et al. [3]. Moreover, 

these results correlate with the notion that carbon fibres in the form of FRP and textile 

reinforcement are thought to be chemically inert as they have been found to be resistant to 

alkaline-induced deterioration [14, 29] and possess a general high resistance to chemical 

environments [5]. 

To further analyse the retention rates pertaining to AR-glass, it is necessary to describe 

possible degradation mechanisms typically affecting glass fibres which are categorized 

accordingly: 1) chemical attack of filaments by alkalies (corrosion) [30] , 2) static fatigue or 

delayed failure of filaments resulting from surface flaws [7, 8], and 3) mechanical attack due 
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to matrix densification [19]. Similar degradation mechanisms have also been reported for 

basalt fibres, yet it should be noted that basalt fibres possess differing chemical compositions 

whereby a high iron content may be responsible for an inferior alkali-resistance [11, 31]. 

It can be further ascertained from Figure 8, that a discernible loss of tensile capacity of AR-

glass has taken place for all cases except for 20°C, pH 7, 10 days (Case 4). A clear 

decrease in tensile rigidity was observed for AR-glass for 20°C, pH 14, 10 days (Case 3). 

Moreover, the lowest tensile capacity retention rates were noted as 33 % and 35 % under the 

conditions of 60°C, pH 14, 5 days (Case 1) and 60°C, pH 7, 30 days (Case 2), respectively. It 

has been stipulated by others that the deterioration of AR-glass textile reinforcement 

increases with increasing pH value and also with temperature [5, 19], which also correlates 

with the reported findings. In other studies, AR-glass fibres exposed to high temperatures 

(50-60°C) while placed in a cement environment, i.e. pore solution, were found to face 

significant strength loss [8, 30]. It was also reported in Chen, Davalos, et al. [32] that glass 

fibre reinforced polymer bars had most significant strength loss for solutions at 60°C. As 

aforementioned, the underlying deterioration mechanism related to glass are fairly complex, 

yet it can be pressumed here that the observed strength loss is attributed to a combination of 

chemical attack and static fatigue of the reinforcement.  

A noticeable decay in tensile capacity for the basalt textile reinforcement samples were 

marked for Cases 1 (60°C, pH 14, 5 days), 2 (60°C, pH 7, 30 days) and 3 (20°C, pH 14, 10 

days). This product had the lowest tensile capacity retention rate of 3 % (Case 1) followed by 

52 % (Case 3) which may indicate its sensitivity to high alkalinity. As for the samples 

exposed to 20°C, pH 7, 10 days (Case 4), the upper bound of the confidence interval for the 

tensile capacity borders the reference baseline such that this decrease in capacity is 

uncertain. Also, the resulting loss in tensile rigidity can be concluded as insignificant in 

comparison to the reference mean value. On the whole, basalt fibres have been described as 

having a low alkaline resistance despite the accelerated ageing conditions and exposure 

medium, i.e. pore solution or concrete matrix. Depending on the exposure medium, however, 
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differing degradation mechanism have been noted, such as the formation of thick corrosion 

surface layers or pitting formation [11]. Despite the use of additional surface coatings 

commonly applied to AR-glass, e.g. styrene-butadiene, basalt fibres still show extensive loss 

of mechanical performance due to the dissolution of the surface leading to loss of cross-

sectional area [12]. 

Furthermore, it is interesting to note the slight difference between the tensile capacity 

retention of AR-glass (65 %) and basalt (52 %) under exposure Case 3. From these results, 

it can be stipulated that both materials are being dissolved by chemical attack by alkalis 

since these are fundamentally made of silicon dioxide (SiO2), thereby leading to structure 

and strength loss [7, 16, 33]. As previously mentioned, certain basalt products have been 

found to have a lower resistance to an alkaline environment compared to AR-glass products. 

Based on these findings, however, it could solely be deduced that the particular applied 

styrene-butadiene sizing could potentially be providing additional surface protection in the 

case of AR-glass. 

As previously mentioned, the retention rates for both basalt and AR-glass were nearly 

unmeasurable for the standard conditions with the exception of those specimens tested after 

5 days of ageing (Case 1). Alternatively, in such cases, the measurement of the residual yarn 

or fibre diameter as demonstrated in Förster and Mäder [10] could be applied in further 

studies to yield complementary results and to observe the influence of the applied sizing [11]. 

The analysis of the chemical degradation of the material, i.e. in terms of surface morphology, 

could also be worth examining, similar to a study by Wei, Cao, et al. [16], in order to more 

accurately target the source of degradation.  
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y=exp(a + b·(T)·t) = exp(a)·exp(b·(T)·t) (4) 

where, t is time in days; T is temperature in °C; a is the intercept representing the reference 

tensile capacity at 20°C and 0 days; the regression coefficients b1, and b2 represent the 

degradation per time unit: b1 for the reference (20°C, 0 days), and b2 for the effect of 

increased temperature. Thus, the degradation per time unit can be formulated as a function 

of temperature, viz. b·(T)= b1 + b2·(T-20). In Equation 4, the first term, exp(a), is equivalent to 

the mean tensile capacity in kN, while the second term, exp(b·(T)·t), is the tensile capacity 

retention rate in percent. The three parameters can be estimated using multiple-regression 

which are summarized in Table 3 and plotted in Figure 9 along with the relevant experimental 

results. The degradation curves presented for the tested basalt and AR-glass products are 

empirically based on the plotted experimental results. These curves depict an initial trial to 

correlate and present the data obtained from the ISO 10406-1 [25] test method. A good 

agreement was found between the degradation curves and the experimental data. However, 

it is important to state that there exists underlying uncertainty in these curves which could be 

further improved by means of additional experiments at varying boundary conditions. Since 

no results could be measured from 10 to 30 days at pH 14 and 60°C, this part of the 

degradation curve cannot be validated for either basalt or AR-glass. There is also a scatter in 

the associated data at 5 days giving rise to uncertainty. Furthermore, these presented curves 

are based on the fact that the entire degradation of the product will follow an exponential 

model, which may not be the case if a given turning point was to occur in the degradation 

behaviour. Other sources of error could be related to the continued degradation reaction of 

the specimens due to entrapped test solution taking place after removal from the accelerated 

testing environment until conducting the experiment. 
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material [10]. Alternatively, given a façade panel application, the reinforcement will likely not 

be found in a constant state of wetness during service life such that wetting and drying cycles 

could be a more appropriate testing method [6]. The findings obtained from this experimental 

study could be used to predict the strength retention as a function of real time while reflecting 

the actual environmental conditions of the intended use according to a similar approach 

proposed by Dejke [10]. A larger data set corresponding to the same test solution, e.g. pH 

14, is however required to enable a correlation in terms of a time shift factor, TSF (see [10]). 

6. Conclusions 

The tensile behaviour of selected textile reinforcement products was investigated under 

accelerated ageing conditions as per ISO 10406-1 [25]. It was observed that the tested 

carbon textile reinforcement has a superior alkali and temperature resistance, while the 

standard conditions were found to be too aggressive for the tested basalt and AR-glass 

products causing them to have nearly unmeasurable capacity after ageing. Testing the 

reinforcement grids according to alternative accelerated ageing schemes yielded significant 

trends, whereby the AR-glass product was found to be temperature sensitive particularly at 

60°C and could retain more tensile strength (65%) than basalt (52%) while being exposed to 

20°C, pH 14, 10 days. It is thought that the type and amount of applied sizing has a 

significant impact on these observed results. Empirical exponential models of the 

degradation of the tensile retention rate were developed as a function of temperature and 

time for the basalt and AR-glass products; the models were calibrated through linear 

regression. The models had an overall good correlation with the experimental data, yet could 

be further verified by means of additional experiments. Furthermore, the carbon 

reinforcement grid’s tensile capacity and rigidity were generally maintained under all tested 

conditions, thus signifying favourable durability properties. Despite it having the highest initial 

cost, it is thought that its enhanced durability could provide a long-term payback. It is 

important to note that the conclusions reached in this study cannot be directly applied to 
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other textile reinforcement materials or fibres as each material differs in terms of chemical 

composition, fabrication and applied sizing. The main drawback of this applied test method is 

the fact that the simulated pore solution may have overestimated or inadequately 

represented realistic boundary conditions of textile reinforcement in a concrete matrix.  

This work also included the development of methods which could be used to support those 

pertaining to tensile tests in the ISO 10406-1 [25] standard such as the preparation and 

selection of end anchorage, as well as a method to measure the strain up to failure. In further 

studies, it could be worth investigating a larger experimental sample size, alternative 

temperature and time ranges, wetting/drying cycles, test solutions and degradation of 

materials subject to tensioning load during ageing. It could also be valuable to analyse the 

chemical degradation processes affecting the surface structure of the reinforcement. Overall, 

there remains a need for an accelerated ageing test method tailored to TRC, as well as a 

database or model that can predict the residual tensile strength (and/or long term 

performance) of various textile reinforcement products according to real-time degradation 

due to varying mechanical and environmental load conditions.  
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